If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2+21p+6=0
a = 9; b = 21; c = +6;
Δ = b2-4ac
Δ = 212-4·9·6
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-15}{2*9}=\frac{-36}{18} =-2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+15}{2*9}=\frac{-6}{18} =-1/3 $
| 4x+3=(-5) | | 2x+38=8(x+1) | | 11=1/2(9.8)t^2 | | 7m-4m=36 | | 30=6(5r-10) | | 44=4(3a+8) | | -2x+7(x+4)=23 | | 7x-4=19=10x+3 | | 3=-6x+3(x+2) | | 3x+(-2)=11 | | 27=3(3+6e) | | 3x+6x=252 | | 6=-4v+2(v-3) | | 8-1/2y=6 | | 9+2b=3 | | b^2+35=179 | | X+3/8-x-1/4=3 | | y=9/5(84)+32 | | -27/40=-c | | 1-x=-2x-8 | | -w/2+6=4 | | 1/3(9j+6)=1/3)+26 | | 7x+11=200 | | 84=9/5x+32 | | 3x-5=1+7x | | h^2+18h+72=0 | | x+3/16=9/8+x-4/2 | | -3y=-9-2(3) | | 21x+4+2x=39 | | b^2+35=175 | | 8n+6=166 | | 3x-4x+3=6 |